Efficient Image Reconstruction Algorithm for ECT System Using Local Ensemble Transform Kalman Filter
نویسندگان
چکیده
منابع مشابه
The Hybrid Local Ensemble Transform Kalman Filter
Hybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an EnKF [1][2][4][5][8], we take the opposite perspective of augmenting an operational EnKF with information from a simple 3D-Variational (3D-Var) method [7]....
متن کاملWeighted Ensemble Transform Kalman Filter for Image Assimilation
This paper proposes an extension of the Weighted Ensemble Kalman filter (WEnKF) proposed by Papadakis et al. (2010) for the assimilation of image observations. The main contribution of this paper consists in a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF) incorporating directly as a measurement model a nonlinear image reconstruction criterion. This t...
متن کاملAdaptive Observation Strategies with the Local Ensemble Transform Kalman Filter
Adaptive observation strategies (AOS) aim to improve forecasts by adding additional observations at a few locations that have no standard observations. Lorenz and Emanuel (1998) designed experiments to evaluate different adaptive strategies with Lorenz 40-variable model. Routine observations are observed over “land” (grid points from 21 to 40) every 6 hours. One adaptive point is chosen from on...
متن کاملWeight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter
We have investigated a method to substantially reduce the analysis computations within the Local Ensemble Transform Kalman Filter (LETKF) framework. Instead of computing the LETKF analysis at every model grid point, we compute the analysis on a coarser grid and interpolate onto a high-resolution grid by interpolating the analysis weights of the ensemble forecast members derived from the LETKF. ...
متن کاملEfficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter
Data assimilation is an iterative approach to the problem of estimating the state of a dynamical system using both current and past observations of the system together with a model for the system’s time evolution. Rather than solving the problem from scratch each time new observations become available, one uses the model to “forecast” the current state, using a prior state estimate (which incor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3051560